Jump to content

Histoire de billes


novae

Recommended Posts

Laurel et Hardy ont chacun un sac de billes.

Hardy : "Ce n'est pas juste Laurel, tu as 3 fois plus de billes que moi !".

Laurel : "D'accord, je te donne une bille pour chaque année de ton âge".

Hardy : "Ce n'est toujours pas juste. Maintenant tu as 2 fois plus de bille que moi !".

Laurel : "Mais si. C'est juste car j'ai 2 fois ton âge !".

Hardy se saisit alors du sac de Laurel et lui enlève autant de billes que l'âge de Laurel.

 

Question : Qui a maintenant le plus de billes ? :unsure:

 

PS : oui je sais Laurel n'est pas 2 fois plus âgé qu'Hardy en réalité mais c'est juste pour l'énigme ;)

  • Like 1
Link to comment
Share on other sites

Salut,

 

Si j'ai bien tout suivi,

Le sac de Laurel correspondait à son age, soit 2 fois l'age de Hardy.

Si Hardy enleve à Laurel autant de billes que son age (de Laurel), en fait il lui vide son sac...

 

...et du coup se retrouve bien sur avec le plus grand nombre, donc Hardy a le plus de billes..!!

 

P.S : le plus marrant aurait été de demander combien de billes avait chacun...

Link to comment
Share on other sites

J'accorde un demi-bravo à Cacaze32 car en effet la réponse est juste : ils ont tous les deux le même nombre de billes

mais il me faut démonstration mathématique générale et pas un cas particulier...

 

La s'est moi qui n'arrive pas a suivre :

 

Salut

Personne n a plus de bille .

Egalité .

60 / 60

 

je pense que laurel a 20 ans et Hardy 10.

Hardy 30 billes au début et laurel 90.

 

Donc Hardy 10 ans et 30 Billes

Donc Laurel 20 ans et 90

 

Hardy : "Ce n'est pas juste Laurel, tu as 3 fois plus de billes que moi !".

donc ici 90 et 30 se vérifie

Laurel : "D'accord, je te donne une bille pour chaque année de ton âge".

90 - 10 = 80 pour laurel et Hardy 30 +10 = 40

Hardy : "Ce n'est toujours pas juste. Maintenant tu as 2 fois plus de bille que moi !".

80 = 40 *2

Laurel : "Mais si. C'est juste car j'ai 2 fois ton âge !".

Hardy se saisit alors du sac de Laurel et lui enlève autant de billes que l'âge de Laurel.

40 + 20 =60

80 - 20 = 60

 

Bref il respecte ton énoncé point par point (bravo soit dit en passant)

 

Mais tu écrit "oui je sais Laurel n'est pas 2 fois plus âgé qu'Hardy en réalité mais c'est juste pour l'énigme "

Link to comment
Share on other sites

En mathématique, le fait que quelque chose marche pour un cas particulier ne peut pas être généralisé tant que ce n'est pas démontré pour tous les cas possibles.

C'est le cas par exemple pour le problème de syracus (voir cette énigme : syracus)

Ca a été vérifié jusqu'à 6 milliards de milliards mais n'est toujours pas considéré comme vrai car personne n'a réussi encore à trouver une démonstration.

 

Cacaze32 a fourni un cas qui respecte l'énoncé et qui aboutit à l'égalité.

Je pourrais aussi donner le cas de Hardy a 39 billes et Laurel 117 billes. Hardy est âgé de 13 ans et Laurel de 26 ans.

Ca respecte aussi l'énoncé et ça aboutit aussi à l'égalité.

On peut trouver des tas d'autres cas qui respectent l'énoncé et qui aboutissent tous à l'égalité mais rien ne nous dit qu'un jour on ne tombera pas sur un cas qui respecte l'énoncé mais qui n'aboutisse pas à l'égalité. La seule façon d'être sûr est de faire une démonstration mathématique.

C'est pour ça que j'ai accordé un demi-bravo.

 

Pour ce que j'ai écrit en PS, ceux qui connaissent la série "Laurel et Hardy" savent qu'ils ont des âges assez proches...

Link to comment
Share on other sites

Ci-dessous la démonstration :

 

[iSPOILER]

Soit L le nombre de billes initial de Laurel.

Soit H le nombre de billes initial de Hardy.

Soit AL l'âge de Laurel.

Soit AH l'âge de Hardy.

 

Hardy : "Ce n'est pas juste Laurel, tu as 3 fois plus de billes que moi !".

L = 3 * H (équation 1)

 

Laurel : "D'accord, je te donne une bille pour chaque année de ton âge".

le nombre de billes de Laurel devient L - AH

le nombre de billes de Hardy devient H + AH

 

Hardy : "Ce n'est toujours pas juste. Maintenant tu as 2 fois plus de bille que moi !".

L - AH = 2 * ( H + AH )

3*H - AH = 2*H + 2*AH (en utilisant l'équation 1)

H = 3*AH (équation 2)

 

Laurel : "Mais si. C'est juste car j'ai 2 fois ton âge !".

AL = 2 * AH (équation 3)

 

Hardy se saisit alors du sac de Laurel et lui enlève autant de billes que l'âge de Laurel.

le nombre de billes de Laurel devient L - AH - AL

le nombre de billes de Hardy devient H + AH + AL

 

Question : Qui a maintenant le plus de billes ?

il faut donc comparer L - AH - AL et H + AH + AL

 

Soit LF le nombre de billes final de Laurel : LF = L - AH - AL (équation 4)

Soit HF le nombre de billes final de Hardy : HF = H + AH + AL (équation 5)

Il faut donc comparer LF et HF

 

Posons Signe = LF -HF

Si Signe > 0 => LF > HF

Si Signe < 0 => LF < HF

Si Signe = 0 => LF = HF

 

Calculons Signe

Signe = LF - HF

Signe = (L - AH - AL) - (H + AH + AL) (en utilisant les équations 4 et 5)

Signe = L - AH - AL - H - AH - AL

Signe = L - H - 2*AH - 2*AL

Signe = 3H - H - 2*AH - 2*AL (en utilisant l'équation 1)

Signe = 2H - 2*AH - 2*AL

Signe = 2 * (H - AH - AL)

Signe = 2 * (H - AH - 2*AH) (en utilisant l'équation 3)

Signe = 2 * (H - 3*AH)

Signe = 2 * (H - H) (en utilisant l'équation 2)

Signe = 0

D'où LF = HF

 

Donc le nombre de billes final de Laurel est le même que celui de Hardy.

[/iSPOILER]

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...